

INTERNET & DATA LAB

Immersive Video

IDLab – MEDIA <u>HTTP://MEDIA.IDLAB.UGENT.BE</u>

Glenn Van Wallendael glenn.vanwallendael@ugent.be Bert Ramlot bert.ramlot@ugent.be

Challenges

GHENT

UNIVERSITY

Direction-dependent and complex light phenomena

- refractions
- smoke
- fire
- complex reflections

Challenges Camera captured

- accurate depth information

- camera calibration
- color matching

Challenges

Lack of dynamic datasets

Do you have video captures from different viewpoints of a scene? Great, let us know!

We currently have a 6x9 PiCameras to shoot videos synchronously. https://media.idlab.ugent.be/multi-camera-setup

Immersive technologies

 $\widehat{}$

GHEN

What technology should I use to immersive myself in a life-like environment?

Gaussian Splatting What is a "splat"?

Attribute class	# attributes
Position	3
Scale	3
Rotation	4
Opacity	1
Color	48
Total	59

🛛 🔻 Remote Viewer Settings (Point view)

Show Input Points
Show Input Points during Motion
Train
SHs Python
Rot-Scale Python
Keep model alive (after training)
1.000 📕 Scaling Mod

FDS	▼ Mode Load camera Save camera (bip)
113	
Snap to closest	0 - + Snap to
50.154263 -	+ Fov Y 0.009000 - + Near 1100.000000 - + Fa
Key cameras: 0	Add key Save key cameras
Play Play (No	Interp) Record Stop 1.000000 - + Speed
Load path Save	path
Save video (1	rom playing) 📃 Save frames (from playing)
Acceleration	a second t popper

Active development/research areas.

- Practical
 - Game engine integration
 - Editing
- Research topics
 - Large-Scale
 - Sparse
 - Object detection
 - Dynamic splats
 - Mesh extraction
 - Compression

Gaussian Splatting Compression: Pipeline

Gaussian Splatting Compression: Culling

(a) 0% removed (PSNR=26.66)

(c) 90% removed (PSNR=24.58)

umec

Compression: Spherical harmonics energy compaction

- A splat's color is dependent on the angle it is looked at ⇒ spherical function
- A spherical function can be decomposed into spherical harmonics (c.f. Fourier)
- 48 lighting coefficients per splat (!)

Idea: Find a 'cheaper' set of lighting coefficients.

Compression: Spherical harmonics energy compaction

Pre-compaction L2-norm = 0.374Zero fraction = 15/45Post-compaction L2-norm = 0.190Zero fraction = 22/45

Compression: results

BEFORE compression

ເກາec

PSNR = 24.94 Size = 630 MB FPS = ~100

Compression: results

AFTER compression

PSNR = 24.76 Size = 10 MB FPS = ~200

General compression effects

- + 35-100x smaller
- + 1.5-3x faster rendering

ເກາຍc

Slightly lower quality

Steered Mixture of Experts (SMoE)

Our kernel-based technique

Light Field

Pixel position:

x,y

Camera position: s, t

Demo Steered Mixture Toolkit (Toggle Tab) Big Font Show Stats Guard FPS Voting Components on GPU: 7866 URAN Stats Guard FPS Voting: 1 Components rendering: 1 Components rendering: 7866 Voting: 7866

🔻 Toolkit (Toggle Tab) 📐				
Big Font 🗸 Show Stats 🔤 Guard FPS				
FPS: 176.7				
🔵 Unlimited 🦳 15 FPS 🔄 30 FPS 🦳 60 FPS 🔄 90 FPS 💭 120 FPS				
▶ Video Outputs				
▶ Renderables				
▶ Movement				
🔻 Render Params				
Wireframe				
0,00000000	Kernel Cutoff			
0.000	Depth Hack			
0.00000	Render Depth			
1.000	Gradient boost			
5.000	Kernel radius scale			
1.000	Kernel covar scale			
1.000	Kernel screen scale			
0,000	00F Strength			
-0.100	OOF Bias			
0,000	OOF Focus depth			
R: 0 G: 0 B: 0	Clear Color			
0.000000	Range From			
1.000000	Range To			
▶ Model Manipulator				
▶ Effects Controller				
▶ Simple Video Output				
▶ Foveated Video Output				
▶ Setup Visualizer				
► Axes				
▼ Lightfield Panel Shader Features				
Rendering Strategy 💿 Softmax 🌔 Alpha Compositing				
9	Ellipse Resolution			
Reproject Position				
✓ Stable Math				
NaN Mode 💿 Disabled 🌑 Visualize 🥥 Discard				
Depth Estimation Mode 🦳 Simple 🦲 Exact				
Remove Flipped Depth				
Enable Effects				
Remove Big Components				
Depth HSV				
Atan Color				

Color All

-0.4506 Pos Y: Pos Z: -4.5955

It is currently a lot harder to build applications for *dynamic* content.

You will have to sacrifice speed or visual quality. For example:

- 4D Gaussian Splatting (= dynamic): RTX 3090 GPU, 800x800: 82 FPS
- dynamic NeRF: not well established, likely not viable on current hardware architectures

What does state-of-the-art real-time dynamic view synthesis look like?

 \rightarrow Depth-Image-Based rendering (DIBR)

umec

Depth Image Based Rendering (DIBR)

Film the scene from multiple viewpoints

Estimate the depth for each frame of each view

Depth estimation

Monocular vs Multi-view stereo

Monocular

+fast

 $\widehat{}$

GHENT

UNIVERSITY

- handles low-texture areas well +
- single camera +
- low resolution -
- depth is a guess! -

Multi-view stereo

- +fast
- doesn't handle low-texture areas well -
- multiple cameras -
- high resolution +
- depth is correct +

We're currently combining both techniques to "get the best of both worlds" $_{20}^{20}$

Depth estimation

Problem with Monocular depth estimation: Ames room illusion

Monocular depth estimation

State-of-the-art

Monocular depth estimation demo

Depth Image Based Rendering (DIBR)

The more correct the estimated depth maps, the closer to "real" the end result.

Noisy depth, some wrong spots

synthetic scene \Rightarrow perfect depth \Rightarrow looks great

umec

Dynamic view synthesis: DIBR

Triangle meshes of 16 views blended together:

VR: 90Hz refresh rate for 2448x2448 (per-eye)

with some optimizations:

- NVIDIA hardware accelerated video decoding (for color and depth videos)
- OpenGL for mesh rendering
- Only render the 4 closest views

https://media.idlab.ugent.be/opendibr

Immersive Video

່ເກາຍເ

ID lab

INTERNET & DATA LAB

HTTP://MEDIA.IDLAB.UGENT.BE

Glenn Van Wallendael glenn.vanwallendael@ugent.be Bert Ramlot bert.ramlot@ugent.be

